Journal of Biomolecular NMR, 2 (1992) 583–590 ESCOM

J-Bio NMR 083

Determination of H_{α} , H_{β} and H_{β} , C' coupling constants in ¹³C-labeled proteins

U. Eggenberger^a, Y. Karimi-Nejad^b, H. Thüring^b, H. Rüterjans^b and C. Griesinger^{a,*}

^eInstitute for Organic Chemistry and ^bInstitute for Biophysical Chemistry, University of Frankfurt, Postfach 111932, D-6000 Frankfurt am Main, Germany

> Received 15 May 1992 Accepted 5 August 1992

Keywords: 3D NMR; J coupling constants; Isotopic labeling; Protein structure; χ₁ angle; SOFT-HCCH-COSY; SOFT-HCCH-E.COSY; Selective heteronuclear decoupling

SUMMARY

A sensitive method to assign H_{β} protons stereospecifically as well as to determine rotamer populations about χ_1 in two 3D experiments is presented. The SOFT-HCCH-COSY experiment allowed us to measure the ³J(H_{β} ,C') couplings, using constant time evolution of C_{α} in t_2 and $C_{aliphatic}$ -selective decoupling during t_3 . The SOFT-HCCH-E.COSY experiment allowed us to measure the ³J(H_{α} , H_{β}) couplings, using constant time evolution of C_{α} in t_2 , a small flip angle ¹H excitation pulse in the second mixing time, and double-band-selective decoupling (aliphatic and carbonyl carbons) during t_3 . The method was applied to ribonuclease T_1 .

INTRODUCTION

Homo- as well as heteronuclear ³J coupling constants yield useful information about local conformations in molecules. In biomolecules these coupling constants are often small and therefore difficult to measure. Techniques based on the E.COSY principle (Griesinger et al., 1985, 1987, 1989) have proven useful to measure such coupling constants. Magnetization is transferred from spin A to spin B without disturbing the spin levels of a third spin, C, during the mixing and during both the preceding and following evolution periods. The A,B cross peak consists of two submultiplet patterns that are displaced with respect to each other by a displacement vector $J_C = (J_{AC}, J_{BC})$. Provided J_{AC} is sufficiently large, J_{BC} can be measured with an accuracy that depends not on its size but only on the signal-to-noise ratio of the spectrum. J_{AC} , which usually represents a coupling that is useless in terms of structure determination, is called the associated coupling of the coupling J_{BC} . The E.COSY concept has been used to measure proton-proton

^{*} To whom correspondence should be addressed.

^{0925-2738/\$ 5.00 © 1992} ESCOM Science Publishers B.V.

couplings utilizing ²J(H,H) as associated coupling of ³J(H,H) (Griesinger et al., 1985) in E.COSY and P.E. COSY (Griesinger et al., 1987; Müller, 1987; Bax and Marion, 1988) experiments. With ¹J(N,H) as associated coupling, heteronuclear long-range J(N,H) coupling constants, such as ³J(N,H_β) and ³J(N_i,H_{ai-1}) (Montelione et al., 1989a; Kurz et al., 1991; Schmieder et al., 1991) as well as ³J(N<u>H</u>,H_a) (Montelione and Wagner, 1989b, 1990; Wagner et al., 1991), have been measured. Likewise, using ¹J(C,H) as associated coupling, ³J(C,H) (Bax and Freeman, 1981; Griesinger et al., 1986; Kessler et al., 1988; Kurz et al., 1991; Schmieder et al., 1991; Sattler et al., 1992) as well as ³J(H,H) (Sørensen 1990; Gemmecker and Fesik, 1991; Emerson and Montelione, 1992; Griesinger and Eggenberger, 1992) coupling constants are accessible. Approaches that yield qualitative H_a,H_β (Clore et al., 1991) and H_β,C' (Grzesiek et al., 1992) coupling constants in labeled proteins have also recently been published.

In this communication a sensitive method for the quantitative determination of ${}^{3}J(H_{\alpha},H_{\beta})$ coupling constants using ${}^{1}J(C_{\alpha},H_{\alpha})$ as associated coupling in an E.COSY type method is presented. In addition, the ${}^{1}J(C_{\alpha},C')$ coupling was used as associated coupling to measure ${}^{3}J(H_{\beta},C')$ coupling constants. The two novel methods are applied to the protein ribonuclease T_{1} .

Measurement of these two types of coupling constants allows stereospecific assignment of the H_{β} protons as well as determination of rotamer populations about χ_1 since each staggered conformation has a unique set of small and large H_{α} , H_{β} and H_{β} , C' coupling constants (Fig. 1).

METHODS

The measurement of $H_{\beta}C'$ coupling constants is achieved by correlating C_{α} with H_{β} using C' as undisturbed spin and decoupling H_{α} (Fig. 2a). The measurement of the desired H_{α}, H_{β} coupling constant is achieved by correlation of C_{α} with H_{β} , using H_{α} as the untouched spin and decoupling the carbonyls. Fig. 2b shows the expected multiplet structure of such an experiment.

In principle, it is possible to determine both types of coupling constants in a single experiment

Fig. 1. The staggered conformations about the side-chain angle χ_1 of an L-amino acid with two H_β protons. The ¹J coupling topology about the C_{α} -C_β bond is shown underneath.

Fig. 2. Schematic multiplet pattern obtained by correlation of C_{α} with H_{β} with full decoupling except for the couplings to C' (a) and H_{α} (b). If the couplings to both spins H_{α} and C' are allowed to evolve, pattern (c) arises. The expected displacement vectors together with their components are indicated.

in which H_{α} and C' are used simultaneously as undisturbed spins during the $C_{\alpha} \rightarrow H_{\beta}$ coherence transfer (Fig. 2c) in twice the measurement time. However, two experiments that each generate a doublet are at least $\sqrt{2}$ times more sensitive than one experiment that generates two doublets in the same measurement time.

The SOFT-HCCH-COSY experiment

The pulse sequence used to measure C', H_{β} coupling constants is an $C_{aliphatic}$ -selective 3D H,C-COSY-CT-C-Relayed-C,H-COSY (Fig. 3a). We will use the abbreviation SOFT-HCCH-COSY for this experiment. The carbonyl spins are not disturbed in the sequence in which carbon pulses that excite only the aliphatic region are used. After a refocusing period of $(2J(H_{\alpha}C_{\alpha}))^{-1}$, the protons are decoupled during $2(\tau + \tau' - \Delta - \Delta')$ with GARP (Shaka et al., 1985) following a 90° purging pulse. Selective 180° and 90° pulses on aliphatic carbons were implemented by G3 and G4 Gaussian cascades (Emsley and Bodenhausen, 1989, 1990) of 250 µs and 400 µs, respectively. Decoupling during t₃ was achieved with an MLEV 16 expansion of G3 pulses (Eggenberger et al., 1992; McCoy and Müller, 1992a,b) of 500 µs length. The decoupling performance of a MLEV expansion of G3 pulses is demonstrated experimentally in Fig. 4a. The scaling of the heteronuclear coupling as a function of offset frequency shows that a decoupling bandwidth of $\pm 4500 \text{ Hz} = 1.65 \langle \gamma B_1/2\pi \rangle$ can be achieved with such an expansion, whereas the coupling in the spectral window between 20 kHz and 22 kHz downfield from the carbon transmitter frequency (C' region) is not reduced to a measurable extent. The theoretical value of scaling of heteronuclear coupling is 0.985.

Using a constant time evolution period, only the C', C_{α} coupling evolves during t_2 . The C', C_{α} coupling is not well resolved for $t_2^{\max} = 14$ ms. This is because less than half a period of the oscillation which is caused by the C_{α} , C' coupling of about 55 Hz is acquired. Therefore, linear prediction of the mirror-imaged FIDs was performed to enhance resolution of ω_2 (Zhu and Bax, 1990). After t_1 and t_3 Fourier transformation, the complex FID in t_2 was mirror-imaged (126 to 250 points). Then 225 complex points were linearly predicted. Squared-cosine weighting and Fourier transformation were applied to the FID after discarding the mirror-image points.

Fig. 3. (a) $C_{aliphatic}$ -selective 3D H,C-COSY-CT-C-Relayed-C,H-COSY sequence to measure ${}^{3}J(C',H_{\beta})$ coupling constants, $\Delta = 1.7 \text{ ms}, \tau = 7 \text{ ms}, \tau' = 3.05 \text{ ms}, \Delta' = 0.95 \text{ ms}$. The homospoil pulses in between heteronuclear polarization transfer had a duration of 3 ms and 2 ms, respectively. The recovery time was 3 ms; 8 scans were performed per t_1, t_2 experiment, and 180° -phase shifts were applied for the initial 90°(¹H) pulse and the initial 90°(¹³C) pulse. TPPI was used for t_1 , and RSH for t_2 ; 74 real, 126 complex, and 1k complex points were recorded in t_1, t_2 , and t_3 ; G3 pulses had a duration of 250 µs; G4 pulses had a duration of 400 µs, and the second carbon 90° pulse was a time-inverted G4. Decoupling during $2(\tau + \tau' - \Delta - \Delta')$ was achieved with GARP with a 90°(¹H) of 200 µs. $C_{aliphatic}$ decoupling during acquisition was achieved by MLEV 16 expansion of G3 according to $A = G3_x$, $B = G3_{-x}$: AABBBAABBBAAABBA; (b) $C_{aliphatic}$ -selective 3D H,C-COSY-CT-C-Relayed-C,H- β -COSY sequence to measure ${}^{3}J(H_a,H_{\beta})$ coupling constants. Same parameters as (a), $\beta = 36^{\circ}$ in order to achieve suppression of the undesired versus desired multiplet components by a factor of 10. Decoupling was achieved by expanding an amplitude-modulated G3 pulse $G3^{ampl}(t) = G3(t) + \cos(\Delta\Omega t) G3(t)$ according to: AA(A)BB(A)BA(B)AB(B) (MLEV - 8/4). AB(B) means: On resonance a $G3_x = A$ is followed by a $G3_{-x} = B$ pulse, and during this on-resonance $G3_xG3_{-x}$ pulse the off-resonance pulse (B) $= \cos(\Delta\Omega t) G3(t)$ with phase -x is applied. The off-resonance G3 pulse is twice as long as the on-resonance G3 pulse. Four shapes AA(A), AB(A), BA(A) and BB(A) are sufficient to program the decoupling sequence on the Bruker AMX.

The SOFT-HCCH-E.COSY experiment

The pulse sequence for the measurement of H_{α} , H_{β} coupling constants is a $C_{aliphatic}$ -selective 3D H,C-COSY-CT-C-Relayed-C,H- β -COSY with C' decoupling during t_2 (Fig. 3b). The abbreviation SOFT-HCCH-E.COSY is used. All carbon pulses are selective for aliphatic carbons except when indicated otherwise. The undesired C_{α} , C' coupling is refocused in t_2 . The C_{α} , H_{α} coupling is in antiphase in ω_2 . The constant time delay 2τ is set to $(2J(C_{\alpha}, C_{\beta}))^{-1} = 14$ ms to achieve maximum transfer from the C_{α} to C_{β} and to remove the ${}^{1}J(C_{\alpha}, C_{\beta})$ coupling in ω_2 . The refocusing delay, $2\tau'$, is set to $(5J(C,C))^{-1}$ to allow detection of C_{β} connected to no, one or two γ carbons. The 180° and 90° pulses selective for aliphatic carbons were implemented as in the former sequence. Since all carbon pulses were derived from the same frequency source, the 180° pulse selective for C' was implemented as G3, with a phase gradient of 20 kHz and a duration of 250 μ s. For the same reason, the decoupling from aliphatic as well as carbonyl carbons during t_3 was achieved by simultaneously applying MLEV-8 and MLEV-4 expanded G3 cascades to the aliphatic and the carbonyl resonances, respectively (see Fig. 4 for details). The mean rf amplitude on C' was set to 0.5 of the amplitude applied to the aliphatic carbons to avoid Hartmann–Hahn transfer between carbonyl and

Fig. 4. (a) Experimental decoupling efficiency demonstrated for the H_{α} resonance of glutamic acid in D₂O for MLEV 16 (G3) with 500 µs G3 pulse duration (mean $\gamma B_1/2\pi = 2.75$ kHz). The plot was obtained by increasing the carbon frequency in steps of 100 Hz from 9.5 kHz upfield of C_{α} to 22 kHz downfield of C_{α} . Decoupling in a range between ± 4500 Hz = 1.65 $\langle \gamma B_1/2\pi \rangle$ on resonance is observed. No decoupling is detected from 20 kHz downfield. (b) Experimental decoupling efficiency for the H_{α} resonance of glutamic acid in D₂O for MLEV - 8/4 (amplitude-modulated G3) with 500 µs on-resonance G3 pulse duration. The plot was obtained by increasing the carbon frequency in steps of 100 Hz from 5 kHz upfield of C_{α} to 22 kHz downfield of C_{α} . Decoupling with a width of 9 kHz on resonance and with a width of 4 kHz at 20 kHz downfield from the carbon frequency source is observed.

aliphatic resonances. Therefore, the MLEV 8 cycle for the aliphatic and the MLEV 4 cycle for the carbonyl carbons have identical durations. The experimental decoupling performance as a function of offset is shown in Fig. 4b.

The proposed sequence for determination of H_a , H_β couplings is broad-band for the protons in contrast to that proposed by Gemmecker and Fesik (1991). The INEPT transfer and the constant time segment in t₂ provide higher sensitivity and less multiplet structure than the sequence of Emerson and Montelione (1992). A further improvement is expected if ¹⁵N decoupling is performed throughout the sequence.

Fig. 5. ω_2, ω_3 -Slices through the SOFT-HCCH-COSY experiment showing the cross peaks of Asn⁴³ (a), Pro³⁹ (b), Thr¹⁰⁴ (c), and Ala⁷⁵ (d). ω_2, ω_3 -Slices through the SOFT-HCCH-E.COSY experiment showing the cross peaks of Asn⁴³ (e), Pro³⁹ (f), Thr¹⁰⁴ (g), and Ala⁷⁵ (h). The extracted coupling constants are indicated. They have an accuracy of ± 0.8 Hz.

RESULTS AND DISCUSSION

The two experimental methods were applied to 1.5 mM ribonuclease T_1 in D_2O . The $C_{\alpha}H_{\beta}$ cross peaks of four representative amino acids (Asn⁴³, Pro³⁹, Thr¹⁰⁴, Ala⁷⁵) in the SOFT-HCCH-COSY experiment are shown in Figs. 5a–d and for the SOFT-HCCH-E.COSY experiment in Figs. 5e–h. These 2D excerpts are taken as ω_1 slices at the chemical shifts of the respective H_{α} resonances. The splitting of the multiplet in two components shifted by J(C') (Figs. 5a–d) and $J(H_{\alpha})$ (Figs. 5e–h) is clearly seen. The coupling constants for these residues which include Glu²⁸ (not shown) were found by shifting the traces obtained by summation over the resonances in ω_1 and ω_2 (Table 1) with respect to each other and maximizing the overlap of the traces. The overlap de-

Residue	H _a H _β pro-R	H _α H _β ^{pro-S}	C'H _β ^{pro-R}	C'H _β ^{pro-S}	χ1	
Thr ¹⁰⁴	2.7		2.0		60	
Pro ³⁹	1.6	4.6	3.5	6.3	50	
Glu ²⁸	9.5	1.5	1.0	1.0	-60	
Asn ⁴³	12.0	4.0	3.0	3.0	- 60	
Ala ⁷⁵	6.8		4.6			

TABLE 1 3J COUPLING CONSTANTS IN Hz AND χ_1 ANGLES DERIVED

creased notably when the shift was mis-set by one point in ω_3 . This amounts to an accuracy of ± 0.8 Hz for the coupling constants.

These values indicate predominance of one staggered conformation for Asn⁴³, Glu²⁸, and Thr¹⁰⁴. For Ala⁷⁵, the expected averaged coupling constants were obtained. For Pro³⁹, deviations from the staggered conformations were expected. χ_1 was determined to be approximately + 50° by using the modified Karplus equation introduced by Haasnoot et al. (1981) for a quantitative analysis of the homonuclear couplings and a qualitative analysis of the heteronuclear couplings.

We have shown that the quantitative measurement of H_{α} , H_{β} and H_{β} , C' coupling constants is possible for a ¹³C-labeled protein. This method allows stereospecific assignment of diastereotopic protons as well as the determination of rotamer populations about the important backbone angle χ_1 . We expect that conformational dynamics around the $C_{\alpha}-C_{\beta}$ bond and possible deviations from the staggered conformations will be detectable by these methods in conjunction with the measurement of ³J(H_{\beta},N) coupling constants and NOEs.

ACKNOWLEDGEMENTS

This work was supported in part by the BMFT under grant BEO21/0318801A, and the DFG under grants Ru 145/8-6, and Gr 1211/2-1. U.E. acknowledges a scholarship from the DFG (Graduiertenkolleg, Institut für Organische Chemie, Universität Frankfurt, Germany). The authors thank Dr. h.c. T. Keller and Dr. W. Bermel for the loan of a broad-band heteronuclear linear amplifier. We thank Dr. M. Reggelin for providing Figs. 2, and 3. Discussions with R. Weisemann, M. Sattler, and H. Schwalbe are gratefully acknowledged.

REFERENCES

- Bax, A. and Freeman, R. (1981) J. Magn. Reson., 45, 177-181.
- Bax, A. and Marion, D. (1988) J. Magn. Reson., 80, 528-533.
- Clore, G.M., Bax, A. and Gronenborn, A.M. (1991) J. Biomol. NMR., 1, 13-22.
- Eggenberger, U., Karimi-Nejad, Y., Rüterjans, H. and Griesinger, C. (1992), Poster presentation at the 33rd ENC, Asilomar, CA, USA.
- Emerson, D. and Montelione, G. (1992) J. Am. Chem. Soc., 114, 354-356.
- Emsley, L. and Bodenhausen, G. (1989) J. Magn. Reson., 82, 211-221.
- Emsley, L. and Bodenhausen, G. (1990) Chem. Phys. Lett., 165, 469-476.
- Gemmecker, G. and Fesik, S.W. (1991) J. Magn. Reson., 95, 208-213.
- Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1985) J. Am. Chem. Soc., 107, 6394-6396.
- Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1986) J. Chem. Phys., 85, 6837-6852.
- Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1987) J. Magn. Reson., 75, 474-492.
- Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426-434.
- Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. and Bax, A. (1992) J. Magn. Reson., 96, 215-221.
- Haasnoot, C.A.G., de Leeuw, F.A.A.M., de Leeuw, H.P.M. and Altona, C. (1981) Biopolymers, 20, 1211-1245.
- Kessler, H., Anders, U. and Gemmecker, G. (1988) J. Magn. Reson., 78, 382-388.
- Kurz, M., Schmieder, P. and Kessler, H. (1991) Angew. Chem., 103, 1341-1342; Angew. Chem. Int. Ed. Engl., 30, 1329-1331.
- McCoy, M. and Müller, L. (1992a), Poster presentation at the 33rd ENC, Asilomar, CA, USA.
- McCoy, M. and Müller, L. (1992b) J. Am. Chem. Soc., 114, 2108-2112.
- Montelione, G.T., Winkler, M.E., Rauenbühler, P. and Wagner, G. (1989a) J. Magn. Reson., 82, 198-204.
- Montelione, G. and Wagner, G. (1989b) J. Am. Chem. Soc., 111, 5474-5475.

- Montelione, G. and Wagner, G. (1990) J. Magn. Reson., 87, 183-188.
- Müller, L. (1987) J. Magn. Reson., 72, 191-196.
- Sattler, M., Schwalbe, H. and Griesinger, C. (1992), J. Am. Chem. Soc., 114, 1126-1127
- Schmieder, P., Kurz, M. and Kessler, H. (1991) J. Biomol. NMR., 1, 403-420.
- Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547-552.
- Sørensen, O.W. (1990) J. Magn. Reson., 90, 433-438.
- Wagner, G., Schmieder, P. and Thanabal, V. (1991), J. Magn. Reson., 93, 436-440.

.

Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405-410.